Booting sequence of UNIX systems

Remco Hobo

September 20, 2004

Preface

In this document I will discuss the different Bootup procedures of Gentoo
Linux, BSD, and Mac OS X 10.3. I will look at the similarities between
these and their main differences.

Gentoo linux

e When an 1386 computer starts, it will first start with initializing de-
vices like the video card. Next it will scan for hard drives, cd-rom
players etc. After this (The post-process), the computer will look in a
pre-defined order for bootable devices. In this case it will start from
the hard drive.

e The bootloader will be loaded. In this case Yaboot. The old kernel,
which was loaded from the BIOS, is replaced with the Yaboot kernel.

e When Yaboot selects a partition to boot from, the kernel on this par-
tition will be unpacked and executed, replacing the Yaboot kernel.

e Yaboot will load the kernel image into memory after which it tells
the CPU to run the kernel. When the kernel is loaded and run, it
initializes all kernel-specific structures and tasks and starts the init
process. This process then makes sure that all filesystems (defined
in /etc/fstab) are mounted and ready to be used. Then it executes
several scripts located in /etc/init.d, which will start the services you
need in order to have a successfully booted system. Following steps
are executed:

— The filesystems are mounted from /etc/inittab. This is done with
the command: si::sysinit:/sbin/rc sysinit

— All scripts that have symlinks to /etc/runlevels/boot are exe-
cuted. This is done with the command: rc::bootwait:/sbin/rc
boot

— Init will how check which runlevel should be executed, it reads
this from /etc/inittab. This file contains a line like: id:3:initdefault
indicating a runlevel of 3.

— Init will now check what it should do with runlevel 3. Runlevel
3 is defined as:. 13:3:wait:/sbin/rc default

— Init will now start the services with the default argument.
e Finally, when all scripts are executed, init activates the terminals (in
most cases just the virtual consoles which are hidden beneath Alt-F1,
Alt-F2, etc.) attaching a special process called agetty to it. This pro-

cess will then make sure you are able to log on through these terminals
by running login.

— The terminals are activiated with lines like: ¢1:12345:respawn:/sbin/agetty
38400 ttyl linux

As an attachment, the inittab script can be found

FreeBSD

e When an 1386 computer starts, it will first start with initializing de-
vices like the video card. Next it will scan for hard drives, cd-rom
players etc. After this (The post-process), the computer will look in a
pre-defined order for bootable devices. In this case it will start from
the hard drive.

e The boot0 stage will be initialized, showing the different devices to
boot from

e The boot2 stage is initialized
e Load stage, showing something similair:

— BTX loader 1.0 BTX version is 1.01

— BIOS drive A: is disk0

— BIOS drive C: is diskl

— BIOS 639kB/64512kB available memory

— FreeBSD/i386 bootstrap loader, Revision 0.8

— Console internal video/keyboard

— (jkh@bento.freebsd.org, Mon Nov 20 11:41:23 GMT 2000)
— /kernel text=0x1234 data=0x2345 syms=[0x4+0x3456]

— Hit [Enter] to boot immediately, or any other key for command
prompt

— Booting [kernel] in 9 seconds...
e The kernel is loaded:

— Copyright (c¢) 1992-2002 The FreeBSD Project.

— Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992,
1993, 1994

— The Regents of the University of California. All rights reserved.
— FreeBSD 4.6-RC #0: Sat May 4 22:49:02 GMT 2002
devnull@kukas: /usr/obj/usr/src/sys/ DEVNULL

— Timecounter ”i8254” frequency 1193182 Hz

After this, things will be executed in user level (super user)
e sys/kern/init_main.c will be run,
e /sbin/init will take over, and /etc/default/rc.conf script will be run.

e After this, the inlog screen appears.

Mac OS X 10.3

e A Mac computer works quite differently then the two mentioned above.
A Mac uses open firmware; this means it will make a tree of all devices
that are available on the Mac. It will also check for bootable devices
attached to the computer. This means it will check the network for
a bootable image, the cd-rom player, hard drives, bootable firewire
devices, bootable USB devices etc.

e The device tree looks something like this:

— 0 dev /s
— {880d90: /cpus

— {I881068: /PowerPC,750Q0
— {I881488: /12-cache

— 1882148: /chosen

— {f882388: /memory@0

— {f882650: /openprom
{f882828: /client-services

— The Open Firmware uses a FCode dialect (FCode is an ANS
Forth compliant dialect that supports compilation of FCode source
to bytecode)

e Control passes to /System/Library/CoreServices/BootX, the boot loader.
BootX loads the kernel and also draws the OS badges, if any.

e BootX tries to load a previously cached list of device drivers (cre-
ated/updated by /usr/sbin/kextcache). Such a cache is of the type
mkext and contains the info dictionaries and binary files for multiple
kernel extensions.

e The init routine of the kernel is executed. The root device of the
booting system is determined. At this point, Open Firmware is not
accessible any more.

e Various Mach/BSD data structures are initialized by the kernel.
e The I/O Kit is initialized.

e The kernel starts /sbin/mach_init, the Mach service naming (boot-
strap) daemon. mach_init maintains mappings between service names
and the Mach ports that provide access to those services.

From this point, startup becomes user level (of course, it still runs as supe-
ruser)

e mach_init starts /sbin/init, the traditional BSD init process. init de-
termines the runlevel, and runs /etc/rc.boot, which sets up the ma-
chine enough to run single-user.

e rc.boot figures out the type of boot (Multi-User, Safe, CD-ROM, Net-
work etc.). In case of a network boot (the sysctl variable kern.netboot
will be set to 1 in which case), it runs /etc/rc.netboot with a start
argument.

rc.boot figures out if a file system consistency check is required. Single-
user and CD-ROM boots do not run fsck. SafeBoot always runs fsck.
rc.boot handles the return status of fsck as well.

If rc.boot exits successfully, /etc/rc, the multi-user startup script is
then run. If booting from a CD-ROM, the script switches over to
/etc/re.cdrom (installation).

/etc/rc mounts local file systems (HFS+, HFS, UFS, /dev/fd, /.vol),
ensures that the directory /private/var/tmp exists, and runs /etc/rc.installer_cleanup,
if one exists (left by an installer before reboot).

/etc/re.cleanup is run. It ”cleans” a number of Unix and Mac specific
directories /files.

BootCache is started.

Various sysctl variables are set (such as for maximum number of vn-
odes, System V IPC, etc.). If /etc/sysctl.conf exists (plus /etc/sysctl-
macosxserver.conf on Mac OS X Server), it is read and sysctl variables
contained therein are set.

syslogd is started.
The Mach symbol file is created.

/etc/rc starts kextd, the daemon process that loads kernel extension
on demand from kernel or client processes.

/usr/libexec /register_mach_bootstrap_servers is run to load various Mach
bootstrap based services contained in /etc/mach_init.d

portmap and netinfo are started.

If /System/Library/Extensions.mkext is older than /System/Library/Extensions,
/etc/rc deletes the existing mkext and creates a new one. It also cre-
ates one if one doesn’t exist.

/etc/re starts /usr/sbin/update, the daemon that flushes internal file
system caches to disk frequently.

/etc/re starts the virtual memory system. /private/var/vm is set up
as the swap directory. /sbin/dynamic_pager is started with the ap-
propriate arguments (swap filename path template, size of swap files

created, high and low water alert triggers specifying when to create
additional swap files or delete existing ones).

e /etc/rc starts /usr/libexec/fix_prebinding to fix incorrectly prebound
binaries.

e /etc/rc executes /etc/re.cleanup to clean up and reset files and devices.

e /etc/rc finally launches /sbin/SystemStarter to handle startup items
from locations such as /System/Library/Startupltems and /Library/Startupltems.
A Startupltem is a program, usually a shell script, whose name matches
the folder name. The folder contains a property list file containing key-
value pairs such as Description, Provides, Requires, OrderPreference,
start /stop messages etc. You can run SystemStarter -n -D as root to
have the program print debugging and dependency information (with-
out actually running anything).

e The CoreGraphics startup item starts the Apple Type Services daemon
(ATSServer) as well as the Window Server (WindowServer).

Conclusion

Since Mac OS X 10.3 will only run on an Mac, it’s booting procedures
where quite different then the other two. Also, a Mac normally boots up
to a graphical interface, which is much more elaborate to initialize then a
simple login prompt.

e Gentoo uses symlinks from /etc/rc?.d to /etc/init.d/ to start all ser-
vices

e FreeBSD uses /etc/default/rc.conf to start all services
e Mac uses the /etc/rc script to start all services

All of the three above use a unix kernel, hand-crafted to it’s own needs.
The basis is the same, it is only configurated for specific needs.
References

[1] http://www.kernelthread.com/mac/osx/arch_boot.html

[2] http://www.freebsd.org/doc/en_US.ISO8859-1/books/arch-
handbook/boot.html

Attachment: The Gentoo inittab script

Most of this information comes from /etc/inittab, which looks somewhat
like:

#

/etc/inittab: This file describes how the INIT process should set up

the system in a certain run-level.

#

Author: Miquel van Smoorenburg, jmiquels@cistron.nl;,

Modified by: Patrick J. Volkerding, jvolkerdi@ftp.cdrom.com;,

Modified by: Daniel Robbins, jdrobbins@gentoo.org;,

Modified by: Martin Schlemmer, jazarah@gentoo.org;,

#

Header: /home/cvsroot/gentoo-src/re-scripts/ete/inittab,v 1.6 azarah
Exp

#

Default runlevel.

#i d:3:initdefault:

System initialization, mount local filesystems, etc.

si:sysinit: /sbin/rc sysinit

Further system initialization, brings up the boot runlevel.

rc::bootwait: /sbin/rc boot

10:0:wait: /sbin/rc shutdown

11:S1:wait: /sbin/rc single

12:2:wait: /sbin/rc nonetwork

13:3:wait: /sbin/rc default

14:4:wait: /sbin/rc default

15:5:wait: /sbin/rc default

16:6:wait: /sbin/rc reboot

#76:6:respawn: /sbin/sulogin

TERMINALS

c1:12345:respawn: /sbin/agetty 38400 ttyl linux

¢2:12345:respawn: /sbin/agetty 38400 tty2 linux

¢3:12345:respawn: /sbin/agetty 38400 tty3 linux

c4:12345:respawn: /sbin/agetty 38400 tty4 linux

¢5:12345:respawn: /sbin/agetty 38400 tty5 linux

¢6:12345:respawn: /sbin/agetty 38400 tty6 linux

What to do at the "Three Finger Salute”.

ca:12345:ctrlaltdel: /sbin/shutdown -r now

Used by /etc/init.d/xdm to control DM startup.

Read the comments in /etc/init.d/xdm for more
info. Do NOT remove, as this will start nothing
extra at boot if /etc/init.d/xdm is not added

to the ”"default” runlevel.

x:a:once: /etc/X11/startDM.sh

End of /etc/inittab

